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ABSTRACT 
 
A sequence of analytic, elastic superpositions is employed to obtain a single equation for 
determining the maximum stress at the bore of a pressurized thick cylinder intersected by 
an inclined, circular crossbore hole whose axis intersects that of the cylinder. The 
crossbore hole may contain a pressure that differs from that in the bore, a situation that 
pertains in some gun tubes during firing.  
 
The formulation permits the modeling of any plane (constant strain) end condition, 
including zero strain, open-ends and closed-ends. The crossbore hole may itself have an 
additional stress concentrator on its boundary; such concentrators may result from 
erosion, corrosion or manufacturing defects. Finally, preexisting residual stresses, prior to 
introduction of the crossbore hole, may also be incorporated 
 
The single equation presented applies to the crossbore-bore intersection, but the 
formulation may be directly extended to model any radial location within the wall. 

 

Table of Contents 
ABSTRACT ......................................................................................................................... i 
INTRODUCTION .............................................................................................................. 1 
ANALYSIS: SIMPLE ELLIPSE ........................................................................................ 2 
ANALYSIS: ELLIPSE PLUS EROSION OR CORROSION ........................................... 4 
SUMMARY AND CONCLUSIONS ................................................................................. 6 
REFERENCES ................................................................................................................... 7 
 
 
Figure 1: Elliptical Hole Created at Intersection of Inclined Circular Crossbore Hole and 
Bore of Tube. Hole Radius, R, Angle of Inclination of Hole to Tube Axis ....................... 8 
Figure 2: Superposition Sequences for Unpressurized and Pressurized Elliptical Hole at 
Bore of Thick Cylinder; Eccentricity of Ellipse c .............................................................. 9 
Figure 3: Superposition Sequences for Unpressurized and Pressurized Elliptical Hole plus 
Additional Stress Concentrator (k) at end of Major Axis; Eccentricity of Ellipse c .......... 9 



Approved for public release; distribution is unlimited. 
1 

INTRODUCTION 
 
Crossbore holes are frequently introduced into thick cylinders, including gun tubes. 
When the center-line of a small circular crossbore hole coincides with the center-line of 
the tube, the intersection at the bore of the tube creates an ellipse, Figure 1. The 
eccentricity of the ellipse depends upon the angle of inclination of the hole centre-line to 
the axis of the tube,  . The ratio major axis/minor axis is then given by )/(sin1  . This 
creates a significant stress concentration at a the end of the major axis, a location that is 
prone to thermal cracking and subsequent cyclic fatigue crack growth.  
 
Cheng [1] reviewed available work and incorporated results due to Little & Bagci [2] 
which provide the stress concentration factor (SCF) at the bore intersection for the case in 
which full bore pressure also acts upon the crossbore hole. However, there is evidence 
that, because of a shock wave at the intersection, only a proportion of bore pressure 
infiltrates the crossbore in a gun tube [3], [4]. 
 
In this paper the Little and Bagci formulation is extended to include any ratio of pressure 
in crossbore to pressure in bore )( , any plane (constant axial strain) end-condition and 
any combination of residual hoop and axial stress arising from prior autofrettage.  
 
Evacuators are also prone to gas erosion and/or corrosion pitting. These serve to further 
increase the SCF. The formulation is further extended to incorporate such effects. 
 
The procedure involves superposition of a series of analytic solutions. In all cases it is 
necessary to model the effect of pressure infiltrating the stress concentrators. It is also 
necessary to properly account for contributions arising from that part of any biaxial stress 
field parallel to the major axis of the stress concentrator. 
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ANALYSIS: SIMPLE ELLIPSE 
 
The hoop stresses at the bore of a plain tube, subjected to internal pressure p with 
internal radius a and external radiusb , are given by Lamé’s equations [5]: 
 

)(

)(
22

22

ab

ab
p




     (1) 

 
as noted above, the eccentricity of the elliptical hole at the bore (designated c) is given 
by: 
 

)/(sin1 c      (2) 
 
where  is the inclination of the hole centre-line to the axis of the tube. 
 
The maximum stress around an elliptical hole subjected to remote uniaxial stress n  

normal to the major axis occurs at the end of the major axis and is given by [5]: 
 

nnellipse c  )21()(       (3) 

 
This situation is illustrated, together with other relevant solutions, in Figure 2.  
 
So for the case where only Lamé hoop stress (defined in eqn. (1)) is acting, the stress at 
the end of the major axis is: 
 

)(

)(
)21(

22

22

ab

ab
cp




    (4) 

 
The stress at the end of the major axis of an elliptical hole subjected to remote uniaxial 
stress t  parallel to the major axis is given by [5]: 

 

ttellipse  )(       (5) 

 
 
 
Depending upon end conditions, the internal pressure may create an axial stress in the 
tube, this is given by: 
 

)( 22

2

ab

pa
z 


     (6) 
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where 0 (constant axial strain, open ends), 1 ( constant axial strain, closed ends) 
and  2  (zero axial strain). 
 
From eqn. (5), for the case where only Lamé axial stress (defined in eqn. (6)) is acting, 
the hoop stress at the end of the major axis created by z  is : 
 

)( 22

2

ab

pa





     (7) 

 
The total hoop stress relating to the Lamé hoop and axial stresses is obtained by summing 
eqns (4) and (7). This is normalized using bore hoop stress in the original tube, eqn (1), to 
obtain the associated stress concentration factor, LameK : 

 

)(

]))(21[(
22

222

ab

aabc
pK Lame 





  (8) 

 
 
Now assume that pressure p acts within the evacuator, where 10    
 
In this case the hoop stress at the end of the major axis is given by  Godfrey [6]: 
 

)12(  cp     (9) 

 
Note: the necessary superpositions are again shown in Figure2. 
 
Hence the total stress arising from Lamé hoop stress plus Lamé axial stress plus pressure 
infiltrating the evacuator may be obtained by summing eqns (4), (7) and (9). If this total 
stress is normalized using Lamé bore hoop stress from eqn (1) the stress concentration 
factor, pressureLameK  , is given by: 

 
 

)(

)]12()12[()]12()12[(
22

22

ab

ccaccb
K pressureLame 





  (10) 

 
 
Equation (10) reduces to Cheng’s eqn (10) [1],  for 1  (full pressure in evacuator), 

1 (closed ends) and to Cheng’s eqn (11) for 1  (full pressure in evacuator), 0  
(open ends). Obviously, it further reduces to: 
 

)12(  cK pressureLame    (11) 

 
for 0  (no pressure in evacuator), 0  
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So, for the following open-end cases with 2,2/  cab  
 
Open end, full bore pressure in evacuator  )0,1(   ,   8.6 pressureLameK   

 
Open end, zero pressure in evacuator  )0,0(   ,   0.5 pressureLameK   

 
Open end, 20% of bore pressure in evacuator )0,2.0(    , 36.5 pressureLameK   

 
If there were pre-existing hoop and axial residual stresses R and zR  within the tube, 

these may be treated in the same fashion as the Lamé stresses. This gives 
 

zRRRconc c    )21(    (12) 

 
 

ANALYSIS: ELLIPSE PLUS EROSION OR CORROSION 
 
Now consider a stress concentration, k, associated with a very small additional stress 
concentrator at the end of the major axis of the ellipse. Following the previous analytical 
sequence it is possible to produce a more general form of eqns (10) and (12). 
 
The hoop stress arising from the initial ellipse given in eqn (4) is now concentrated by a 
further factor of k giving: 
 

)(

)(
)21(

22

22

ab

ab
cpk




    (13) 

 
However, somewhat paradoxically, the stress at the end of the major axis of any hole 
symmetric about its major axis subjected to remote uniaxial stress t  parallel to the 

major axis is still given by [6], [7]: 
 

ttellipse  )(       (14) 

 
 
 
 
This situation is illustrated, together with other relevant solutions, in Figure 3.  
 
Hence, eqn (5) is unchanged by k and 
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)( 22

2

ab

pa





       (15) 

 
giving: 
 

)(

]))(21([
22

222

ab

aabck
pK Lame 





  (16) 

 
Again, assume that pressure p acts within the evacuator, where 10    
 
In this case the hoop stress at the end of the major axis of ellipse plus erosion is given by: 
 

]2)21([  ckp    (17) 

 
where the necessary superpositions are again shown in Figure 3.. 
 
Note that eqn (17) reduces to eqn (9) for the case where there is no additional stress 
concentration, i.e.  1k . 
 
Hence the total stress arising from Lamé hoop stress plus Lamé axial stress plus pressure 
infiltrating the evacuator and erosion may be obtained by summing eqns (13), (15) and 
(17). If this total stress is normalized using bore hoop stress, eqn (1), the stress 
concentration factor, erosionpressureLameK  , is given by: 

 
 

)(

)]2)1)(21([]2)1)(21([
22

22

ab

ckackb
K erosionpressureLame 





 (18) 

 
 
If there were pre-existing hoop and axial residual stresses R and zR  within the tube, 

these may be treated in the same fashion as the Lamé stresses. This gives 
 

RRRconc ck    )21(    (19) 

 
Note that the value of the additional stress concentration, k is a function of the angle of 
inclination,  . For example, when looking along the axis of the crossbore, the crossbore 
hole will appear circular. If an additional small erosion appears semi-circular, hole and 
erosion will appear elliptical and semi-elliptical respectively at the bore intersection. 
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SUMMARY AND CONCLUSIONS 
 
The work reported here employs a sequence of analytic, elastic superpositions to obtain a 
single equation for determining the maximum stress at the bore of a pressurized thick 
cylinder intersected by an inclined, circular crossbore hole whose axis intersects that of 
the cylinder. The crossbore hole may contain a pressure that differs from that in the bore, 
a situation that pertains in some gun tubes during firing.  
 
The formulation permits the modeling of any plane (constant strain) end condition, 
including zero strain, open-ends and closed-ends. The crossbore hole may itself have an 
additional stress concentrator on its boundary; such concentrators may result from 
erosion, corrosion or manufacturing defects. Finally, preexisting residual stresses, prior to 
introduction of the crossbore hole, may also be incorporated 
 
Since all solutions assume elastic behavior there is no limit upon the Von Mises stress 
arising from particular combinations of bore pressure, crossbore pressure, end condition 
and preexisting residual stress. In such cases it will be necessary to adopt some form of 
‘capping’ of the Von Mises stress, taking into account the specific loading sequence. 
 
The single equation presented applies to the crossbore/bore intersection, but the 
formulation may be directly extended to model any radial location within the wall. 
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Figure 1: Elliptical Hole Created at Intersection of Inclined Circular Crossbore Hole and Bore of 

Tube. Hole Radius, R, Angle of Inclination of Hole to Tube Axis 
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Figure 2: Superposition Sequences for Unpressurized and Pressurized Elliptical Hole at Bore of 
Thick Cylinder; Eccentricity of Ellipse c
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Internally Pressurized Elliptical Cutout + Concentrator (k):  
Superposition to Determine Stress Concentration Factor 

Equal Biaxial Tension of Plate  
With Elliptical Hole + Concentrator 

Figure 3: Superposition Sequences for Unpressurized and Pressurized Elliptical Hole plus Additional 
Stress Concentrator (k) at end of Major Axis; Eccentricity of Ellipse c


